Коэффициент корреляции Пирсона
Коэффициент корреляции Пирсона в курсовых, дипломных и магистерских работах по психологии используется для выявления взаимосвязи двух переменных, измеренных на одной и той же выборке. Это могут быть как психологические показатели (тревожность, самооценка, самоактуализация, осмысленность жизни), так и не психологические (успешность учебной деятельности, возраст, стаж).
Для вычисления коэффициента корреляции Пирсона необходимо иметь:
- Выборку испытуемых (желательно не менее 10 человек).
- Результаты диагностики какого-либо показателя в этой группе испытуемых, например, эффективности профессиональной деятельности сотрудников.
- Результаты тестирования другого показателя, например, уровня рефлективности сотрудников.
- Таблицу исходных данных, в которой в двух столбцах приведены значения измеренных показателей (в нашем случае профессиональная эффективность и рефлективность). При этом количество строк соответствует числу испытуемых в группе.
Далее, используя данные из этой сводной таблицы результатов психодиагностики можно проверить гипотезу о том, есть ли между эффективностью сотрудников и рефлективностью взаимосвязь. Для решения этой задачи и проверки гипотезы можно использовать коэффициент корреляции Пирсона.
Коэффициент корреляции Пирсона относится к числу параметрических статистических критериев . Это означает, что для его использования в курсовой, дипломной или магистерской работе по психологии необходимо, чтобы психологические показатели удовлетворяли ряду условий, в частности, были распределены по нормальному закону. Если это условие не выполняется, то для анализа взаимосвязей между параметрами использовать коэффициент ранговой корреляции Спирмена.
В выпускных квалификационных работах по психологии чаще всего не проводится проверка нормальности распределения показателей, поэтому следует использовать коэффициент корреляции рангов Спимрмена. В то же время, если выборка испытуемых в дипломе по психологии достаточно большая (более 100 человек), можно использовать коэффициент корреляции Пирсона.
Расчёт коэффициента корреляции Пирсона
Вычислить коэффициент корреляции Пирсона можно вручную, а можно рассчитать при помощи статистических программ.
Логика расчета коэффициент корреляции Пирсона в самом общем и приближенном виде состоит в том, что анализируются знаки отклонений показателей двух величин от средних значений .
Например, для каждого испытуемого рассчитываются разности между его показателем по эффективности и рефлексивности и средним значением. Далее эти разности перемножаются для каждого испытуемого и суммируются для всей выборки.
Если знак полученного произведения отрицательный — корреляция обратная. Если знак произведения положительный – прямая. Величина произведения по модулю отражает величину корреляции, то есть силу взаимосвязи между показателями.
Анализ результатов расчета коэффициента корреляции Пирсона
Значение коэффициента корреляции Пирсона может располагаться в диапазоне значений от 1- до 1.
Отрицательные значения свидетельствуют об обратной взаимосвязи между показателями. Например, чем выше рефлексивность, тем ниже эффективность деятельности. Это справедливо для профессий, где погруженность в собственные проживания вредит делу. Работникам МЧС надо спасать людей, а не рефлексировать. Поэтому взаимосвязь между этим и показателями в данной выборке , скорее всего, оказалась бы отрицательной.
Положительные значения свидетельствуют о прямой взаимосвязи между показателями. Например, чем выше рефлексивность, тем выше эффективность деятельности. Это справедливо для профессий, где внимание к внутренней жизни помогает делу. Например, для психотерапевтов для проведения успешной работы с клиентами важно постоянно анализировать собственные переживания. Поэтому в группе практических психологов взаимосвязь между эффективностью и рефлексивностью, с большой долей вероятности, оказалась бы положительной.
Важно определить не только знак (направление) взаимосвязи, но и уровень ее значимости – силу связи между показателями. Чем выше численное значение коэффициента корреляции Пирсона по абсолютному значению (без учета знака), тем выше степень взаимосвязи между показателями.
Надеюсь, эта статья поможет вам написать работу по психологии самостоятельно. Если понадобится помощь, обращайтесь (все виды работ по психологии; статистические расчеты). Заказать
Источник
Линейный коэффициент корреляции Пирсона
Обнаружение взаимосвязей между явлениями – одна из главных задач статистического анализа. На то есть две причины. Первая. Если известно, что один процесс зависит от другого, то на первый можно оказывать влияние через второй. Вторая. Даже если причинно-следственная связь отсутствует, то по изменению одного показателя можно предсказать изменение другого.
Взаимосвязь двух переменных проявляется в совместной вариации: при изменении одного показателя имеет место тенденция изменения другого. Такая взаимосвязь называется корреляцией, а раздел статистики, который занимается взаимосвязями – корреляционный анализ.
Корреляция – это, простыми словами, взаимосвязанное изменение показателей. Она характеризуется направлением, формой и теснотой. Ниже представлены примеры корреляционной связи.
Далее будет рассматриваться только линейная корреляция. На диаграмме рассеяния (график корреляции) изображена взаимосвязь двух переменных X и Y. Пунктиром показаны средние.
При положительном отклонении X от своей средней, Y также в большинстве случаев отклоняется в положительную сторону от своей средней. Для X меньше среднего, Y, как правило, тоже ниже среднего. Это прямая или положительная корреляция. Бывает обратная или отрицательная корреляция, когда положительное отклонение от средней X ассоциируется с отрицательным отклонением от средней Y или наоборот.
Линейность корреляции проявляется в том, что точки расположены вдоль прямой линии. Положительный или отрицательный наклон такой линии определяется направлением взаимосвязи.
Крайне важная характеристика корреляции – теснота. Чем теснее взаимосвязь, тем ближе к прямой точки на диаграмме. Как же ее измерить?
Складывать отклонения каждого показателя от своей средней нет смысла, получим нуль. Похожая проблема встречалась при измерении вариации, а точнее дисперсии. Там эту проблему обходят через возведение каждого отклонения в квадрат.
Квадрат отклонения от средней измеряет вариацию показателя как бы относительно самого себя. Если второй множитель в числителе заменить на отклонение от средней второго показателя, то получится совместная вариация двух переменных, которая называется ковариацией.
Чем больше пар имеют одинаковый знак отклонения от средней, тем больше сумма в числителе (произведение двух отрицательных чисел также дает положительное число). Большая положительная ковариация говорит о прямой взаимосвязи между переменными. Обратная взаимосвязь дает отрицательную ковариацию. Если количество совпадающих по знаку отклонений примерно равно количеству не совпадающих, то ковариация стремится к нулю, что говорит об отсутствии линейной взаимосвязи.
Таким образом, чем больше по модулю ковариация, тем теснее линейная взаимосвязь. Однако значение ковариации зависит от масштаба данных, поэтому невозможно сравнивать корреляцию для разных переменных. Можно определить только направление по знаку. Для получения стандартизованной величины тесноты взаимосвязи нужно избавиться от единиц измерения путем деления ковариации на произведение стандартных отклонений обеих переменных. В итоге получится формула коэффициента корреляции Пирсона.
Показатель имеет полное название линейный коэффициент корреляции Пирсона или просто коэффициент корреляции.
Коэффициент корреляции показывает тесноту линейной взаимосвязи и изменяется в диапазоне от -1 до 1. -1 (минус один) означает полную (функциональную) линейную обратную взаимосвязь. 1 (один) – полную (функциональную) линейную положительную взаимосвязь. 0 – отсутствие линейной корреляции (но не обязательно взаимосвязи). На практике всегда получаются промежуточные значения. Для наглядности ниже представлены несколько примеров с разными значениями коэффициента корреляции.
Таким образом, ковариация и корреляция отражают тесноту линейной взаимосвязи. Последняя используется намного чаще, т.к. является относительным показателем и не имеет единиц измерения.
Диаграммы рассеяния дают наглядное представление, что измеряет коэффициент корреляции. Однако нужна более формальная интерпретация. Эту роль выполняет квадрат коэффициента корреляции r 2 , который называется коэффициентом детерминации, и обычно применяется при оценке качества регрессионных моделей. Снова представьте линию, вокруг которой расположены точки.
Линейная функция является моделью взаимосвязи между X иY и показывает ожидаемое значение Y при заданном X. Коэффициент детерминации – это соотношение дисперсии ожидаемых Y (точек на прямой линии) к общей дисперсии Y, или доля объясненной вариации Y. При r = 0,1 r 2 = 0,01 или 1%, при r = 0,5 r 2 = 0,25 или 25%.
Выборочный коэффициент корреляции
Коэффициент корреляции обычно рассчитывают по выборке. Значит, у аналитика в распоряжении не истинное значение, а оценка, которая всегда ошибочна. Если выборка была репрезентативной, то истинное значение коэффициента корреляции находится где-то относительно недалеко от оценки. Насколько далеко, можно определить через доверительные интервалы.
Согласно Центральное Предельной Теореме распределение оценки любого показателя стремится к нормальному с ростом выборки. Но есть проблемка. Распределение коэффициента корреляции вблизи придельных значений не является симметричным. Ниже пример распределения при истинном коэффициенте корреляции ρ = 0,86.
Предельное значение не дает выйти за 1 и, как бы «поджимает» распределение справа. Симметричная ситуация наблюдается, если коэффициент корреляции близок к -1.
В общем рассчитывать на свойства нормального распределения нельзя. Поэтому Фишер предложил провести преобразование выборочного коэффициента корреляции по формуле:
Распределение z для тех же r имеет следующий вид.
Намного ближе к нормальному. Стандартная ошибка z равна:
Далее исходя из свойств нормального распределения несложно найти верхнюю и нижнюю границы доверительного интервала для z. Определим квантиль стандартного нормального распределения для заданной доверительной вероятности, т.е. количество стандартных отклонений от центра распределения.
cγ – квантиль стандартного нормального распределения;
N -1 – функция обратного стандартного распределения;
γ – доверительная вероятность (часто 95%).
Затем рассчитаем границы доверительного интервала.
Нижняя граница z:
Верхняя граница z:
Теперь обратным преобразованием Фишера из z вернемся к r.
Нижняя граница r:
Верхняя граница r:
Это была теоретическая часть. Переходим к практике расчетов.
Как посчитать коэффициент корреляции в Excel
Корреляционный анализ в Excel лучше начинать с визуализации.
На диаграмме видна взаимосвязь двух переменных. Рассчитаем коэффициент парной корреляции с помощью функции Excel КОРРЕЛ. В аргументах нужно указать два диапазона.
Коэффициент корреляции 0,88 показывает довольно тесную взаимосвязь между двумя показателями. Но это лишь оценка, поэтому переходим к интервальному оцениванию.
Расчет доверительного интервала для коэффициента корреляции в Excel
В Эксель нет готовых функций для расчета доверительного интервала коэффициента корреляции, как для средней арифметической. Поэтому план такой:
— Делаем преобразование Фишера для r.
— На основе нормальной модели рассчитываем доверительный интервал для z.
— Делаем обратное преобразование Фишера из z в r.
Удивительно, но для преобразования Фишера в Excel есть специальная функция ФИШЕР.
Стандартная ошибка z легко подсчитывается с помощью формулы.
Используя функцию НОРМ.СТ.ОБР, определим квантиль нормального распределения. Доверительную вероятность возьмем 95%.
Значение 1,96 хорошо известно любому опытному аналитику. В пределах ±1,96σ от средней находится 95% нормально распределенных величин.
Используя z, стандартную ошибку и квантиль, легко определим доверительные границы z.
Последний шаг – обратное преобразование Фишера из z назад в r с помощью функции Excel ФИШЕРОБР. Получим доверительный интервал коэффициента корреляции.
Нижняя граница 95%-го доверительного интервала коэффициента корреляции – 0,724, верхняя граница – 0,953.
Надо пояснить, что значит значимая корреляция. Коэффициент корреляции статистически значим, если его доверительный интервал не включает 0, то есть истинное значение по генеральной совокупности наверняка имеет тот же знак, что и выборочная оценка.
Несколько важных замечаний
1. Коэффициент корреляции Пирсона чувствителен к выбросам. Одно аномальное значение может существенно исказить коэффициент. Поэтому перед проведением анализа следует проверить и при необходимости удалить выбросы. Другой вариант – перейти к ранговому коэффициенту корреляции Спирмена. Рассчитывается также, только не по исходным значениям, а по их рангам (пример показан в ролике под статьей).
2. Синоним корреляции – это взаимосвязь или совместная вариация. Поэтому наличие корреляции (r ≠ 0) еще не означает причинно-следственную связь между переменными. Вполне возможно, что совместная вариация обусловлена влиянием третьей переменной. Совместное изменение переменных без причинно-следственной связи называется ложная корреляция.
3. Отсутствие линейной корреляции (r = 0) не означает отсутствие взаимосвязи. Она может быть нелинейной. Частично эту проблему решает ранговая корреляция Спирмена, которая показывает совместный рост или снижение рангов, независимо от формы взаимосвязи.
В видео показан расчет коэффициента корреляции Пирсона с доверительными интервалами, ранговый коэффициент корреляции Спирмена.
Источник
КРИТЕРИЙ КОРРЕЛЯЦИИ ПИРСОНА
Карл Пирсон
– это метод параметрической статистики, позволяющий определить наличие или отсутствие линейной связи между двумя количественными показателями, а также оценить ее тесноту и статистическую значимость. Другими словами, критерий корреляции Пирсона позволяет определить, изменяется ли (возрастает или уменьшается) один показатель в ответ на изменения другого? В статистических расчетах и выводах коэффициент корреляции обычно обозначается как rxy или Rxy.
1. История разработки критерия корреляции
Критерий корреляции Пирсона был разработан командой британских ученых во главе с Карлом Пирсоном (1857-1936) в 90-х годах 19-го века, для упрощения анализа ковариации двух случайных величин. Помимо Карла Пирсона над критерием корреляции Пирсона работали также Фрэнсис Эджуорт и Рафаэль Уэлдон.
2. Для чего используется критерий корреляции Пирсона?
Критерий корреляции Пирсона позволяет определить, какова теснота (или сила) корреляционной связи между двумя показателями, измеренными в количественной шкале. При помощи дополнительных расчетов можно также определить, насколько статистически значима выявленная связь.
Например, при помощи критерия корреляции Пирсона можно ответить на вопрос о наличии связи между температурой тела и содержанием лейкоцитов в крови при острых респираторных инфекциях, между ростом и весом пациента, между содержанием в питьевой воде фтора и заболеваемостью населения кариесом.
3. Условия и ограничения применения критерия хи-квадрат Пирсона
- Сопоставляемые показатели должны быть измерены в количественной шкале (например, частота сердечных сокращений, температура тела, содержание лейкоцитов в 1 мл крови, систолическое артериальное давление).
- Посредством критерия корреляции Пирсона можно определить лишь наличие и силу линейной взаимосвязи между величинами. Прочие характеристики связи, в том числе направление (прямая или обратная), характер изменений (прямолинейный или криволинейный), а также наличие зависимости одной переменной от другой — определяются при помощи регрессионного анализа.
- Количество сопоставляемых величин должно быть равно двум. В случае анализ взаимосвязи трех и более параметров следует воспользоваться методом факторного анализа.
- Критерий корреляции Пирсона является параметрическим, в связи с чем условием его применения служит нормальное распределение каждой из сопоставляемых переменных. В случае необходимости корреляционного анализа показателей, распределение которых отличается от нормального, в том числе измеренных в порядковой шкале, следует использовать коэффициент ранговой корреляции Спирмена.
- Следует четко различать понятия зависимости и корреляции. Зависимость величин обуславливает наличие корреляционной связи между ними, но не наоборот.
Например, рост ребенка зависит от его возраста, то есть чем старше ребенок, тем он выше. Если мы возьмем двух детей разного возраста, то с высокой долей вероятности рост старшего ребенка будет больше, чем у младшего. Данное явление и называется зависимостью, подразумевающей причинно-следственную связь между показателями. Разумеется, между ними имеется и корреляционная связь, означающая, что изменения одного показателя сопровождаются изменениями другого показателя.
В другой ситуации рассмотрим связь роста ребенка и частоты сердечных сокращений (ЧСС). Как известно, обе эти величины напрямую зависят от возраста, поэтому в большинстве случаев дети большего роста (а значит и более старшего возраста) будут иметь меньшие значения ЧСС. То есть, корреляционная связь будет наблюдаться и может иметь достаточно высокую тесноту. Однако, если мы возьмем детей одного возраста, но разного роста, то, скорее всего, ЧСС у них будет различаться несущественно, в связи с чем можно сделать вывод о независимости ЧСС от роста.
Приведенный пример показывает, как важно различать фундаментальные в статистике понятия связи и зависимости показателей для построения верных выводов.
4. Как рассчитать коэффициента корреляции Пирсона?
Расчет коэффициента корреляции Пирсона производится по следующей формуле:
5. Как интерпретировать значение коэффициента корреляции Пирсона?
Значения коэффициента корреляции Пирсона интерпретируются исходя из его абсолютных значений. Возможные значения коэффициента корреляции варьируют от 0 до ±1. Чем больше абсолютное значение rxy – тем выше теснота связи между двумя величинами. rxy = 0 говорит о полном отсутствии связи. rxy = 1 – свидетельствует о наличии абсолютной (функциональной) связи. Если значение критерия корреляции Пирсона оказалось больше 1 или меньше -1 – в расчетах допущена ошибка.
Для оценки тесноты, или силы, корреляционной связи обычно используют общепринятые критерии, согласно которым абсолютные значения rxy < 0.3 свидетельствуют о слабой связи, значения rxy от 0.3 до 0.7 — о связи средней тесноты, значения rxy > 0.7 — о сильной связи.
Более точную оценку силы корреляционной связи можно получить, если воспользоваться таблицей Чеддока:
Абсолютное значение rxy | Теснота (сила) корреляционной связи |
менее 0.3 | слабая |
от 0.3 до 0.5 | умеренная |
от 0.5 до 0.7 | заметная |
от 0.7 до 0.9 | высокая |
более 0.9 | весьма высокая |
Оценка статистической значимости коэффициента корреляции rxy осуществляется при помощи t-критерия, рассчитываемого по следующей формуле:
Полученное значение tr сравнивается с критическим значением при определенном уровне значимости и числе степеней свободы n-2. Если tr превышает tкрит, то делается вывод о статистической значимости выявленной корреляционной связи.
6. Пример расчета коэффициента корреляции Пирсона
Целью исследования явилось выявление, определение тесноты и статистической значимости корреляционной связи между двумя количественными показателями: уровнем тестостерона в крови (X) и процентом мышечной массы в теле (Y). Исходные данные для выборки, состоящей из 5 исследуемых (n = 5), сведены в таблице:
- Вычислим суммы анализируемых значений X и Y:
Σ(X) = 951 + 874 + 957 + 1084 + 903 = 4769
Σ(Y) = 83 + 76 + 84 + 89 + 79 = 441
Mx = Σ(X) / n = 4769 / 5 = 953.8
Значение коэффициента корреляции Пирсона составило 0.97, что соответствует весьма высокой тесноте связи между уровнем тестостерона в крови и процентом мышечной массы. Данная корреляционная связь является статистически значимой (p<0.01).
Источник
Метод корреляционного анализа: пример. Корреляционный анализ — это…
Существует множество определений термина. Исходя из вышеизложенного, можно сказать, что корреляционный анализ — это метод, применяющийся с целью проверки гипотезы о статистической значимости двух и более переменных, если исследователь их может измерять, но не изменять.
Есть и другие определения рассматриваемого понятия. Корреляционный анализ — это метод обработки статистических данных, заключающийся в изучении коэффициентов корреляции между переменными. При этом сравниваются коэффициенты корреляции между одной парой или множеством пар признаков, для установления между ними статистических взаимосвязей. Корреляционный анализ — это метод по изучению статистической зависимости между случайными величинами с необязательным наличием строгого функционального характера, при которой динамика одной случайной величины приводит к динамике математического ожидания другой.
Задачи корреляционного анализа
Исходя из приведенных выше определений, можно сформулировать следующие задачи описываемого метода: получить информацию об одной из искомых переменных с помощью другой; определить тесноту связи между исследуемыми переменными.
Корреляционный анализ предполагает определение зависимости между изучаемыми признаками, в связи с чем задачи корреляционного анализа можно дополнить следующими:
- выявление факторов, оказывающих наибольшее влияние на результативный признак;
- выявление неизученных ранее причин связей;
- построение корреляционной модели с ее параметрическим анализом;
- исследование значимости параметров связи и их интервальная оценка.
Условия использования метода
Результативные факторы зависят от одного до нескольких факторов. Метод корреляционного анализа может применяться в том случае, если имеется большое количество наблюдений о величине результативных и факторных показателей (факторов), при этом исследуемые факторы должны быть количественными и отражаться в конкретных источниках. Первое может определяться нормальным законом — в этом случае результатом корреляционного анализа выступают коэффициенты корреляции Пирсона, либо, в случае, если признаки не подчиняются этому закону, используется коэффициент ранговой корреляции Спирмена.
Оценка тесноты связи
Теснота корреляционной связи определяется по коэффициенту корреляции (r): сильная — r = ±0,7 до ±1, средняя — r = ±0,3 до ±0,699, слабая — r = 0 до ±0,299. Данная классификация не является строгой. На рисунке показана несколько иная схема.
Правила отбора факторов корреляционного анализа
При применении данного метода необходимо определиться с факторами, оказывающими влияние на результативные показатели. Их отбирают с учетом того, что между показателями должны присутствовать причинно-следственные связи. В случае создания многофакторной корреляционной модели отбирают те из них, которые оказывают существенное влияние на результирующий показатель, при этом взаимозависимые факторы с коэффициентом парной корреляции более 0,85 в корреляционную модель предпочтительно не включать, как и такие, у которых связь с результативным параметром носит непрямолинейный или функциональный характер.
Отображение результатов
Результаты корреляционного анализа могут быть представлены в текстовом и графическом видах. В первом случае они представляются как коэффициент корреляции, во втором — в виде диаграммы разброса.
При отсутствии корреляции между параметрами точки на диаграмме расположены хаотично, средняя степень связи характеризуется большей степенью упорядоченности и характеризуется более-менее равномерной удаленностью нанесенных отметок от медианы. Сильная связь стремится к прямой и при r=1 точечный график представляет собой ровную линию. Обратная корреляция отличается направленностью графика из левого верхнего в нижний правый, прямая — из нижнего левого в верхний правый угол.
Трехмерное представление диаграммы разброса (рассеивания)
Помимо традиционного 2D-представления диаграммы разброса в настоящее время используется 3D-отображение графического представления корреляционного анализа.
Также используется матрица диаграммы рассеивания, которая отображает все парные графики на одном рисунке в матричном формате. Для n переменных матрица содержит n строк и n столбцов. Диаграмма, расположенная на пересечении i-ой строки и j-ого столбца, представляет собой график переменных Xi по сравнению с Xj. Таким образом, каждая строка и столбец являются одним измерением, отдельная ячейка отображает диаграмму рассеивания двух измерений.
Ссылки
- Discriminant Correlation Analysis (DCA) Haghighat M., Abdel-Mottaleb M., Alhalabi W.
Discriminant Correlation Analysis: Real-Time Feature Level Fusion for Multimodal Biometric Recognition. IEEE Transactions on Information Forensics and Security]. — 2020. — Т. 11(9). (MATLAB)
- Проверить качество перевода с иностранного языка.
- Исправить статью согласно стилистическим правилам Википедии.
- Проверить статью на грамматические и орфографические ошибки.
Пример применения метода корреляционного анализа
В Великобритании было предпринято любопытное исследование. Оно посвящено связи курения с раком легких, и проводилось путем корреляционного анализа. Это наблюдение представлено ниже.
Исходные данные для корреляционного анализа
Профессиональная группа | курение | смертность |
Фермеры, лесники и рыбаки | 77 | 84 |
Шахтеры и работники карьеров | 137 | 116 |
Производители газа, кокса и химических веществ | 117 | 123 |
Изготовители стекла и керамики | 94 | 128 |
Работники печей, кузнечных, литейных и прокатных станов | 116 | 155 |
Работники электротехники и электроники | 102 | 101 |
Инженерные и смежные профессии | 111 | 118 |
Деревообрабатывающие производства | 93 | 113 |
Кожевенники | 88 | 104 |
Текстильные рабочие | 102 | 88 |
Изготовители рабочей одежды | 91 | 104 |
Работники пищевой, питьевой и табачной промышленности | 104 | 129 |
Производители бумаги и печати | 107 | 86 |
Производители других продуктов | 112 | 96 |
Строители | 113 | 144 |
Художники и декораторы | 110 | 139 |
Водители стационарных двигателей, кранов и т. д. | 125 | 113 |
Рабочие, не включенные в другие места | 133 | 146 |
Работники транспорта и связи | 115 | 128 |
Складские рабочие, кладовщики, упаковщики и работники разливочных машин | 105 | 115 |
Канцелярские работники | 87 | 79 |
Продавцы | 91 | 85 |
Работники службы спорта и отдыха | 100 | 120 |
Администраторы и менеджеры | 76 | 60 |
Профессионалы, технические работники и художники | 66 | 51 |
Начинаем корреляционный анализ. Решение лучше начинать для наглядности с графического метода, для чего построим диаграмму рассеивания (разброса).
Она демонстрирует прямую связь. Однако на основании только графического метода сделать однозначный вывод сложно. Поэтому продолжим выполнять корреляционный анализ. Пример расчета коэффициента корреляции представлен ниже.
С помощью программных средств (на примере MS Excel будет описано далее) определяем коэффициент корреляции, который составляет 0,716, что означает сильную связь между исследуемыми параметрами. Определим статистическую достоверность полученного значения по соответствующей таблице, для чего нам нужно вычесть из 25 пар значений 2, в результате чего получим 23 и по этой строке в таблице найдем r критическое для p=0,01 (поскольку это медицинские данные, здесь используется более строгая зависимость, в остальных случаях достаточно p=0,05), которое составляет 0,51 для данного корреляционного анализа. Пример продемонстрировал, что r расчетное больше r критического, значение коэффициента корреляции считается статистически достоверным.
Литература
- Wolfgang Härdle, Léopold Simar.
Canonical Correlation Analysis // Applied Multivariate Statistical Analysis. — 2007. — ISBN 978-3-540-72243-4. — DOI:10.1007/978-3-540-72244-1_14. - Knapp T. R.
Canonical correlation analysis: A general parametric significance-testing system // Psychological Bulletin. — 1978. — Т. 85, вып. 2. — DOI:10.1037/0033-2909.85.2.410. - Kanti V. Mardia, J. T. Kent, J. M. Bibby.
Multivariate Analysis. — Academic Press, 1979. - Hotelling H.
Relations Between Two Sets of Variates // Biometrika. — 1936. — Т. 28, вып. 3–4. — DOI:10.1093/biomet/28.3-4.321. - Hsu D., Kakade S. M., Zhang T.
A spectral algorithm for learning Hidden Markov Models // Journal of Computer and System Sciences. — 2012. — Т. 78, вып. 5. — DOI:10.1016/j.jcss.2011.12.025. — arXiv:0811.4413. - Huang S. Y., Lee M. H., Hsiao C. K.
Nonlinear measures of association with kernel canonical correlation analysis and applications // Journal of Statistical Planning and Inference. — 2009. — Т. 139, вып. 7. — DOI:10.1016/j.jspi.2008.10.011. - Sieranoja S., Sahidullah Md, Kinnunen T., Komulainen J., Hadid A.
Audiovisual Synchrony Detection with Optimized Audio Features // IEEE 3rd Int. Conference on Signal and Image Processing (ICSIP 2018). — 2020. — Июль. - Tofallis C.
Model Building with Multiple Dependent Variables and Constraints // Journal of the Royal Statistical Society, Series D. — 1999. — Т. 48, вып. 3. — DOI:10.1111/1467-9884.00195. — arXiv:1109.0725. - Degani A., Shafto M., Olson L.
Canonical Correlation Analysis: Use of Composite Heliographs for Representing Multiple Patterns // Diagrammatic Representation and Inference. — 2006. — Т. 4045. — (Lecture Notes in Computer Science). — ISBN 978-3-540-35623-3. — DOI:10.1007/11783183_11. - Jendoubi T., Strimmer K.
A whitening approach to probabilistic canonical correlation analysis for omics data integration. — 2020.
Использование ПО при проведении корреляционного анализа
Описываемый вид статистической обработки данных может осуществляться с помощью программного обеспечения, в частности, MS Excel. Корреляционный анализ в Excel предполагает вычисление следующих параметров с использованием функций:
1. Коэффициент корреляции определяется с помощью функции КОРРЕЛ [CORREL](массив1; массив2). Массив1,2 — ячейка интервала значений результативных и факторных переменных.
Линейный коэффициент корреляции также называется коэффициентом корреляции Пирсона, в связи с чем, начиная с Excel 2007, можно использовать функцию ПИРСОН (PEARSON) с теми же массивами.
Графическое отображение корреляционного анализа в Excel производится с помощью панели «Диаграммы» с выбором «Точечная диаграмма».
После указания исходных данных получаем график.
2. Оценка значимости коэффициента парной корреляции с использованием t-критерия Стьюдента. Рассчитанное значение t-критерия сравнивается с табличной (критической) величиной данного показателя из соответствующей таблицы значений рассматриваемого параметра с учетом заданного уровня значимости и числа степеней свободы. Эта оценка осуществляется с использованием функции СТЬЮДРАСПОБР (вероятность; степени_свободы).
3. Матрица коэффициентов парной корреляции. Анализ осуществляется с помощью средства «Анализ данных», в котором выбирается «Корреляция». Статистическую оценку коэффициентов парной корреляции осуществляют при сравнении его абсолютной величины с табличным (критическим) значением. При превышении расчетного коэффициента парной корреляции над таковым критическим можно говорить, с учетом заданной степени вероятности, что нулевая гипотеза о значимости линейной связи не отвергается.
Как рассчитать коэффициент корреляции
Коэффициенты Пирсона и Спирмена можно рассчитать вручную. Это может понадобиться при углубленном изучении статистических методов.
Однако в большинстве случаев при решении прикладных задач, в том числе и в психологии, можно проводить расчеты с помощью специальных программ.
Расчет с помощью электронных таблиц Microsoft Excel
Вернемся опять к примеру со студентами и рассмотрим данные об уровне их интеллекта и длине прыжка с места. Занесем эти данные (два столбца) в таблицу Excel.
Переместив курсор в пустую ячейку, нажмем опцию «Вставить функцию» и выберем «КОРРЕЛ» из раздела «Статистические».
Формат этой функции предполагает выделение двух массивов данных: КОРРЕЛ (массив 1; массив»). Выделяем соответственно столбик с IQ и длиной прыжков.
Далее нажимаем галочку (то есть, рассчитать) и получаем значение , в нашем случае 0,038. Как видим, коэффициент не равен нулю, хотя и очень близок к нему.
В таблицах Excel реализована формула расчета только коэффициента Пирсона.
Расчет с помощью программы STATISTICA
Заносим данные по интеллекту и длине прыжка в поле исходных данных. Далее выбираем опцию «Непараметрические критерии», «Спирмена». Выделяем параметры для расчета и получаем следующий результат.
Как видно, расчет дал результат 0,024, что отличается от результата по Пирсону – 0,038, полученной выше с помощью Excel. Однако различия незначительны.
Источник
Пример расчета коэффициента корреляции Пирсона
Например, нам необходимо определить взаимосвязь двух переменных агрессивности и IQ у школьников по полученным данным тестирования.
Данные сведем в одну таблицу:
№ | Данные по агрессивности () | Данные по IQ () |
1 | 24 | 100 |
2 | 27 | 115 |
3 | 26 | 117 |
4 | 21 | 119 |
5 | 20 | 134 |
6 | 31 | 94 |
7 | 26 | 105 |
8 | 22 | 103 |
9 | 20 | 111 |
10 | 18 | 124 |
11 | 30 | 122 |
12 | 29 | 109 |
13 | 24 | 110 |
14 | 26 | 86 |
1. Вычисляем суму значений и
3. Вычисляем для каждого испытуемого отклонения от среднего арифметического для и
№ | ||
1 | 0,6 | 10,6 |
2 | -2,4 | -4,4 |
3 | -1,4 | -6,4 |
4 | 3,6 | -8,4 |
5 | 4,6 | -23,4 |
6 | -6,4 | 16,6 |
7 | -1,4 | 5,6 |
8 | 2,6 | 7,6 |
9 | 4,6 | -0,4 |
10 | 6,6 | -13,4 |
11 | -5,4 | -11,4 |
12 | -4,4 | 1,6 |
13 | 0,6 | 0,6 |
14 | -1,4 | 24,6 |
4.Затем мы возводим в квадрат каждое отклонение:
№ | ||
1 | 0,36 | 112,36 |
2 | 5,76 | 19,36 |
3 | 1,96 | 40,96 |
4 | 12,96 | 70,56 |
5 | 21,16 | 547,56 |
6 | 40,96 | 275,56 |
7 | 1,96 | 31,36 |
8 | 6,76 | 57,79 |
9 | 21,16 | 0,16 |
10 | 43,56 | 179,56 |
11 | 29,16 | 129,96 |
12 | 19,36 | 2,56 |
13 | 0,36 | 0,36 |
14 | 1,96 | 605,16 |
5. Потом рассчитываем сумма квадратов отклонений: и
6. Рассчитываем для каждого наблюдения произведение разности среднего арифметического и значения
№ | |
1 | 6,36 |
2 | 10,56 |
3 | 8,96 |
4 | -30,24 |
5 | -107,64 |
6 | -106,24 |
7 | -7,84 |
8 | 19,76 |
9 | -1,84 |
10 | -88,44 |
11 | 61,56 |
12 | -7,04 |
13 | 0,36 |
14 | -34,44 |
7. Рассчитываем сумму
9. Вывод: В соответствии с таблицей значений величин коэффициента корреляции делаем вывод о том, что это слабая по силе отрицательная корреляция.
Источник