РЕНТГЕ́НОВСКОЕ ИЗЛУЧЕ́НИЕ
РЕНТГЕ́НОВСКОЕ ИЗЛУЧЕ́НИЕ, электромагнитное излучение с длинами волн 10 –11 –10 –8 м. Длинноволновый край диапазона называют мягким Р. и., коротковолновый – жёстким Р. и. Открыто в 1895 В. К. Рентгеном. Термин «Р. и.» используется в осн. в России, в др. странах распространён предложенный Рентгеном термин «X-лучи».
Р. и. возникает в результате взаимодействия свободных электронов с атомами или ионами посредством двух элементарных процессов: торможения электронов или создания электронами вакансий во внутр. оболочках. Первый приводит к возникновению Р. и. с непрерывным спектром (тормозное излучение), второй – к возникновению Р. и. с линейчатым спектром (характеристическое излучение). Возможны и др. механизмы генерации Р. и.: синхротронный механизм (см. Синхротронное излучение), взаимодействие ускоренных ионов с атомами, излучение многозарядных ионов в горячей плазме, некоторые процессы в астрофизич. объектах.
Р. и. обладает рядом характерных свойств. Энергия рентгеновского кванта (10 2 –10 5 эВ) достаточна для ионизации атома любого химич. элемента. Жёсткое Р. и. отличает высокая проникающая способность. Малая длина волны Р. и. определяет особенности его распространения в кристаллич. структурах (дифракции Брэгга – Вульфа и Лауэ). Регистрируют Р. и. с использованием фотоматериалов, флуоресцентных экранов, ионизационных камер, пропорциональных счётчиков.
Р. и. широко применяется в науке (см., напр., Рентгеновский структурный анализ, Рентгеновская астрономия), пром-сти (напр., при неразрушающем контроле) и медицине. Мягкое Р. и. используют в технологиях проекционной литографии. Наиболее часто применяемым источником Р. и. служит рентгеновская трубка.
Источник
РЕНТГЕНОВСКИЕ ЛУЧИ
РЕНТГЕНОВСКИЕ ЛУЧИ – электромагнитное излучение с длинами волн 10 –4 – 10 А (10 –5 – 1 нм).
В 1895 немецкий физик Рентген, проводя опыты по прохождению тока между двумя электродами в вакууме, обнаружил, что экран, покрытый люминесцентным веществом (солью бария) светится, хотя разрядная трубка закрыта черным картонным экраном – так было открыто излучение, проникающее через непрозрачные преграды, названное Рентгеном Х-лучами. Было обнаружено, что рентгеновское излучение, невидимое для человека, поглощается в непрозрачных объектах тем сильнее, чем больше атомный номер (плотность) преграды, поэтому рентгеновские лучи легко проходят через мягкие ткани человеческого тела, но задерживаются костями скелета. Были сконструированы источники мощных рентгеновских лучей, позволяющие просвечивать металлические детали и находить в них внутренние дефекты.
Немецкий физик Лауэ предположил, что рентгеновские лучи являются таким же электромагнитным излучением, как лучи видимого света, но с меньшей длиной волны и к ним применимы все законы оптики, в том числе возможна дифракция. В оптике видимого света дифракция на элементарном уровне может быть представлена как отражение света от системы штрихов – дифракционной решетки, происходящее только под определенными углами, при этом угол отражения лучей связан с углом падения, расстоянием между штрихами дифракционной решетки и длиной волны падающего излучения. Для дифракции нужно, чтобы расстояние между штрихами было примерно равно длине волны падающего света.
Лауэ предположил, что рентгеновские лучи имеют длину волны, близкую к расстоянию между отдельными атомами в кристаллах, т.е. атомы в кристалле создают дифракционную решетку для рентгеновских лучей. Рентгеновские лучи, направленные на поверхность кристалла, отразились на фотопластинку, как предсказывалось теорией.
Любые изменения в положении атомов влияют на дифракционную картину, и, изучая дифракцию рентгеновских лучей,можно узнать расположение атомов в кристалле и изменение этого расположения при любых физических, химических и механических воздействиях на кристалл.
Сейчас рентгеноанализ используется во многих областях науки и техники, с его помощью узнали расположение атомов в существующих материалах и создали новые материалы с заданными структурой и свойствами. Последние достижения в этой области (наноматериалы, аморфные металлы, композитные материалы) создают поле деятельности для следующих научных поколений.
Возникновение и свойства рентгеновского излучения
Источником рентгеновских лучей является рентгеновская трубка, в которой есть два электрода – катод и анод. При нагреве катода происходит электронная эмиссия, электроны, вылетающие из катода, ускоряются электрическим полем и ударяются о поверхность анода. От обычной радиолампы (диода) рентгеновскую трубку отличает, в основном, более высокое ускоряющее напряжение (более 1 кВ).
Когда электрон вылетает из катода, электрическое поле заставляет его лететь по направлению к аноду, при этом скорость его непрерывно возрастает, электрон несет магнитное поле, напряженность которого растет с ростом скорости электрона. Достигая поверхности анода электрон резко тормозится, при этом возникает электромагнитный импульс с длинами волн в определенном интервале (тормозное излучение). Распределение интенсивности излучения по длинам волн зависит от материала анода рентгеновской трубки и приложенного напряжения, при этом со стороны коротких волн эта кривая начинается с некоторой пороговой минимальной длины волны, зависящей от приложенного напряжения. Совокупность лучей со всеми возможными длинами волн образует непрерывный спектр, и длина волны, соответствующая максимальной интенсивности, в 1,5 раза превышает минимальную длину волны.
При увеличении напряжения рентгеновский спектр резко меняется за счет взаимодействия атомов с высокоэнергетичными электронами и квантами первичных рентгеновских лучей. Атом содержит внутренние электронные оболочки (энергетические уровни), количество которых зависит от атомного номера (обозначаются буквами K, L, М и т.д.) Электроны и первичные рентгеновские лучи выбивают электроны из одних энергетических уровней на другие. Возникает метастабильное состояние и для перехода к стабильному состоянию необходим перескок электронов в обратном направлении. Этот скачок сопровождается выделением кванта энергии и возникновением рентгеновского излучения. В отличие от рентгеновских лучей с непрерывным спектром, у этого излучения очень узкий интервал длин волн и высокая интенсивность (характеристическое излучением) (см. рис.). Количество атомов, определяющих интенсивность характеристического излучения, очень велико, например, для рентгеновской трубки с медным анодом при напряжении 1 кВ токе 15 мА за 1 с характеристическое излучение дают 10 14 –10 15 атомов. Эта величина вычисляется как отношение общей мощности рентгеновского излучения к энергии кванта рентгеновского излучения из К-оболочки (К-серия рентгеновского характеристического излучения). Общая мощность рентгеновского излучения при этом составляет всего 0,1% от потребляемой мощности, остальная часть теряется, в основном, за счет перехода в тепло.
Вследствие высокой интенсивности и узкого интервала длин волн характеристическое рентгеновское излучение является основным типом излучения, используемым в научных исследованиях и при технологическом контроле. Одновременно с лучами К-серии генерируются лучи L и М-серий, имеющих значительно большие длины волн, но применение их ограничено. K-серия имеет две составляющие с близкими длинами волн a и b , при этом интенсивность b -составляющей в 5 раз меньше, чем a . В свою очередь a -составляющая характеризуется двумя очень близкими длинами волн, интенсивность одной из которых в 2 раза больше, чем другой. Чтобы получить излучение с одной длиной волны (монохроматическое излучение), разработаны специальные методы, использующие зависимость поглощения и дифракции рентгеновских лучей от длины волны. Увеличение атомного номера элемента связано с изменением характеристик электронных оболочек, при этом чем больше атомный номер материала анода рентгеновской трубки, тем меньше длина волны К-серии. Наиболее широко применяются трубки с анодами из элементов с атомными номерами от 24 до 42 (Cr, Fe, Co, Cu, Mo) и длинами волн от 2,29 до 0,712 А (0,229 – 0,712 нм).
Кроме рентгеновской трубки, источниками рентгеновского излучения могут быть радиоактивные изотопы, одни могут непосредственно испускать рентгеновское излучение, другие испускают электроны и a -частицы, генерирующие рентгеновское излучение при бомбардировке металлических мишеней. Интенсивность рентгеновского излучения радиоактивных источников обычно значительно меньше, чем рентгеновской трубки (за исключением радиоактивного кобальта, используемого в дефектоскопии и дающего излучение очень малой длины волны – g -излучение), они малогабаритны и не требуют электроэнергии. Синхротронное рентгеновское излучение получают в ускорителях электронов, длина волны этого излучения значительно превышает получаемую в рентгеновских трубках (мягкое рентгеновское излучение), интенсивность его на несколько порядков выше интенсивности излучения рентгеновских трубок. Есть и природные источники рентгеновского излучения. Радиоактивные примеси обнаружены во многих минералах, зарегистрировано рентгеновское излучение космических объектов, в том числе и звезд.
Взаимодействие рентгеновских лучей с кристаллами
При рентгенографическом исследовании материалов с кристаллической структурой анализируют интерференционные картины, возникающие в результате рассеяния рентгеновских лучей электронами, принадлежащими атомам кристаллической решетки. Атомы считаются неподвижными, их тепловые колебания не учитываются и все электроны одного и того же атом считаются сосредоточенными в одной точке – узле кристаллической решетки.
Для вывода основных уравнений дифракции рентгеновских лучей в кристалле рассматривается интерференция лучей, рассеянных атомами, расположенными вдоль прямой в кристаллической решетке. На эти атомы под углом, косинус которого равен a 0 , падает плоская волна монохроматического рентгеновского излучения. Законы интерференции лучей, рассеянных атомами, аналогичны существующим для дифракционной решетки, рассеивающей световое излучение в видимом диапазоне длин волн. Чтобы на большом расстоянии от атомного ряда амплитуды всех колебаний складывались, необходимо и достаточно, чтобы разность хода лучей, идущих от каждой пары соседних атомов, содержала целое число длин волн. При расстоянии между атомами а это условие имеет вид:
а( a – a 0) = h l ,
где a – косинус угла между атомным рядом и отклоненным лучом, h – целое число. Во всех направлениях, не удовлетворяющих этому уравнению, лучи не распространяются. Таким образом, рассеянные лучи образуют систему коаксиальных конусов, общей осью которых является атомный ряд. Следы конусов на плоскости, параллельной атомному ряду, – гиперболы, а на плоскости, перпендикулярной ряду, – круги.
При падении лучей под постоянным углом полихроматическое (белое) излучение разлагается в спектр лучей, отклоненных под фиксированными углами. Таким образом, атомный ряд является спектрографом для рентгеновского излучения.
Обобщение на двумерную (плоскую) атомную решетку, а затем на трехмерную объемную (пространственную) кристаллическую решетку дает еще два аналогичных уравнения, в которые входят углы падения и отражения рентгеновского излучения и расстояния между атомами по трем направлениям. Эти уравнения называются уравнениями Лауэ и лежат в основе рентгеноструктурного анализа.
Амплитуды лучей, отраженных от параллельных атомных плоскостей складываются и т.к. количество атомов очень велико, отраженное излучение можно зафиксировать экспериментально. Условие отражения описывается уравнением Вульфа – Брэгга 2d sin q = n l , где d – расстояние между соседними атомными плоскостями, q – угол скольжения между направлением падающего луча и этими плоскостями в кристалле, l – длина волны рентгеновского излучения, n – целое число, названное порядком отражения. Угол q является углом падения по отношению именно к атомным плоскостям, которые не обязательно совпадают по направлению с поверхностью исследуемого образца.
Разработано несколько методов рентгеноструктурного анализа, использующих как излучение со сплошным спектром, так и монохроматическое излучение. Исследуемый объект при этом может быть неподвижным или вращающимся, может состоять из одного кристалла (монокристалл) или многих (поликристалл), дифрагированное излучение может регистрироваться с помощью плоской или цилиндрической рентгеновской пленки или перемещающегося по окружности детектора рентгеновского излучения, однако во всех случаях при проведении эксперимента и интерпретации результатов используется уравнение Вульфа – Брэгга.
Рентгеноанализ в науке и технике
С открытием дифракции рентгеновских лучей в распоряжении исследователей оказался метод, позволяющий без микроскопа изучить расположение отдельных атомов и изменения этого расположения при внешних воздействиях.
Основное применение рентгеновских лучей в фундаментальной науке – структурный анализ, т.е. установление пространственного расположения отдельных атомов в кристалле. Для этого выращивают монокристаллы и проводят рентгеноанализ, изучая как расположения, так и интенсивности рефлексов. Сейчас определены структуры не только металлов, но и сложных органических веществ, в которых элементарные ячейки содержат тысячи атомов.
В минералогии методом ретгеноанализа определены структуры тысяч минералов и созданы экспресс-методы анализа минерального сырья.
У металлов сравнительно простая кристаллическая структура и рентгеновский метод позволяет исследовать ее изменения при различных технологических обработках и создавать физические основы новых технологий.
По расположению линий на рентгенограммах определяют фазовый состав сплавов, по их ширине – число, величину и форму кристаллов, по распределению интенсивности в дифракционном конусе – ориентировку кристаллов (текстуру).
С помощью этих методик изучают процессы при пластической деформации, включающие в себя дробление кристаллов, возникновение внутренних напряжений и несовершенств кристаллической структуры (дислокаций). При нагреве деформированных материалов изучают снятие напряжений и рост кристаллов (рекристаллизация).
При рентгеноанализе сплавов определяют состав и концентрацию твердых растворов. При возникновении твердого раствора меняются межатомные расстояния и, следовательно, расстояния между атомными плоскостями. Эти изменения невелики, поэтому разработаны специальные прецизионные методы измерения периодов кристаллической решетки с точностью на два порядка превышающей точность измерения при обычных рентгеновских методах исследования. Сочетание прецизионных измерений периодов кристаллической решетки и фазового анализа позволяют построить границы фазовых областей на диаграмме состояния. Рентгеновским методом можно также обнаружить промежуточные состояния между твердыми растворами и химическими соединениями – упорядоченные твердые растворы, в которых атомы примеси расположены не хаотически, как в твердых растворах, и в то же время не с трехмерной упорядоченностью, как в химических соединениях. На рентгенограммах упорядоченных твердых растворов есть дополнительные линии, расшифровка рентгенограмм показывает, что атомы примеси занимают определенные места в кристаллической решетке, например, в вершинах куба.
При закалке сплава, не испытывающего фазовых превращений, может возникать пересыщенный твердый раствор и при дальнейшем нагреве или даже выдержке при комнатной температуре твердый раствор распадается с выделением частиц химического соединения. Это эффект старениея и проявляется он на рентгенограммах как изменение положения и ширины линий. Исследование старения особенно важно для сплавов цветных металлов, например, старение превращает мягкий закаленный алюминиевый сплав в прочный конструкционный материал дуралюмин.
Наибольшее технологическое значение имеют рентгеновские исследования термической обработки стали. При закалке (быстром охлаждении) стали происходит бездиффузионный фазовый переход аустенит – мартенсит, что приводит к изменению структуры от кубической к тетрагональной, т.е. элементарная ячейка приобретает форму прямоугольной призмы. На рентгенограммах это проявляется как расширение линий и разделение некоторых линий на две. Причины этого эффекта – не только изменение кристаллической структуры, но и возникновение больших внутренних напряжений из-за термодинамической неравновесности мартенситной структуры и резкого охлаждения. При отпуске (нагреве закаленной стали) линии на рентгенограммах сужаются, это связано с возвращением к равновесной структуре.
В последние годы большое значение приобрели рентгеновские исследования обработки материалов концентрированными потоками энергии (лучами лазера, ударными волнами, нейтронами, электронными импульсами), они потребовали новых методик и дали новые рентгеновские эффекты. Например, при действии лучей лазера на металлы нагрев и охлаждение происходят настолько быстро, что в металле при охлаждении кристаллы успевают вырасти только до размеров в несколько элементарных ячеек (нанокристаллы) или вообще не успевают возникнуть. Такой металл после охлаждения выглядит как обычный, но не дает четких линий на рентгенограмме, а отраженные рентгеновские лучи распределены по всему интервалу углов скольжения.
После нейтронного облучения на рентгенограммах возникают дополнительные пятна (диффузные максимумы). Радиоактивный распад также вызывает специфические рентгеновские эффекты, связанные с изменением структуры, а также с тем, что исследуемый образец сам становится источником рентгеновского излучения.
Источник
Вредно ли делать рентген?
Но его нельзя назвать абсолютно безопасным, так как во время обследования пациент получает дозу ионизирующего излучения. И все же рентген, несмотря на возможные риски для здоровья, до сих пор применяется в диагностике, так как польза этого метода выше возможного вреда.
Что такое рентген?
Рентгенография – это метод неинвазивного исследования внутренней структуры тела путем просвечивания его рентгеновскими лучами и фиксирование результата на специальную пленку или электронный носитель. Принцип получения изображения основывается на особенностях прохождения лучей сквозь различные ткани тела. Костная поглощает излучение полностью, поэтому на снимке выглядит белой, мягкие ткани, частично его задерживающие – серыми, а прослойки воздуха – черными.
С помощью рентгена грудной клетки, например, можно обнаружить пневмонию – очаг воспаления в легких будет более светлого цвета, в то время как здоровые легкие на снимке должны быть черными.
Как работает рентген аппарат?
Принцип рентгенографии основан на использовании рентгеновских лучей для отображения структуры внутренних органов и костной ткани человека. Рентгеновский лечи представляют собой вид электромагнитного излучения, которое генерирует рентгеновская трубка. Лучи проходят сквозь тело человека и фиксируются цифровым детектором, расположенным за пациентом, или на чувствительной к рентгеновским лучам пленке. Ткани организма по-разному поглощают радиацию: плотные кости задерживают ее, а мягкие ткани пропускают. Это различие и позволяет получить контрастное двухмерное изображение исследуемой части тела пациента.
Безопасная доза облучения при рентгене
Радиоактивное излучение все время действует на человека и в малых дозах не причиняет ему вреда. Избежать его влияния невозможно, так как вся поверхность Земли подвергается облучению из космоса, а часть природных радионуклидов находится во внешней среде (земной коре, воде, воздухе). Дозы поглощенной организмом радиации измеряются в миллизивертах (мЗв). Природный радиационный фон составляет примерно 2 мЗв в год.
В целях безопасности рентгенологических исследований была установлена предельно допустимая доза облучения в год (ПДД), составляющая 100 мЗв в год. Это максимально допустимая сумма доз радиации, полученных за год, которая не принесет вреда здоровью человека.
При рентгене области грудной клетки (ОГК) человек получает всего 0,1 мЗв, рентгене тазобедренных суставов – 1,47 мЗв, что намного меньше допустимого уровня. При спондилографии (так называется снимок спины) доза излучения составляет 1,5 мЗв. При рентгеноскопии ОГК (метод лучевой диагностики, позволяющий в реальном времени наблюдать за состоянием тканей и костных структур области грудной клетки) за 1 минуту исследования пациент получает 1.4 мЗв.
Показатели излучения могут отличаться в зависимости от используемого рентген-аппарата. Чем он современнее, тем меньше доза облучения. Безопасная доза лучевой нагрузки для профилактических исследований составляет 1-2 мЗв в год. Подавляющее большинство медицинских обследований, в рамках которых применяется рентгенологическое излучение, используют рентгеновские лучи с низкой энергией и облучают тело человека на протяжении доли секунд, в связи с чем, даже при их многократном повторении, они считаются практически безвредными для человека.
Как часто можно делать рентген?
Рентген можно делать столько раз, сколько назначит врач. К данному методу диагностики прибегают только в тех случаях, когда другие виды исследований не достаточно информативны и не дают возможности врачу поставить точный диагноз. Использование рентгена должно быть оправдано, тогда он принесет больше пользы для здоровья пациента, чем вреда. Согласно нормативным документам, для разных категорий пациентов установлена своя максимально допустимая доза излучения:
- 100 мЗв в год для больных, нуждающихся в регулярном рентгенологическом контроле (онкология, предраковые состояния, диагностика врожденных пороков сердечно-сосудистой системы, тяжелые травмы);
- 20 мЗв в год для пациентов, которым требуются диагностические исследования при соматических (неонкологических) заболеваниях с целью уточнения диагноза или выбора тактики лечения;
- 1-2 мЗв в год при прохождении профилактических осмотров.
Как делают рентген?
Необходимость подготовки к процедуре зависит от вида предстоящего исследования. Если назначен рентген брюшной области или пояснично-крестцового отдела позвоночника, то за три дня до процедуры необходимо исключить из рациона продукты, способствующие повышенному газообразованию. При рентгене кишечника может быть дополнительно назначена очистительная клизма или слабительное. За несколько часов до исследования нельзя курить, есть и пить.
Перед процедурой необходимо снять с себя украшения, ремень, вынуть из карманов металлические предметы. При рентгене позвоночника или грудной клетки необходимо раздеться до пояса. Рентген фаланг кистей и стоп можно выполнять в одежде. Те части тела, которые не обследуются, должны быть закрыты защитным свинцовым фартуком или шапочкой. Врач также надевает специальный костюм и уходит в соседнее помещение, откуда управляет рентген-аппаратом.
После процедуры пациенту выдают снимок или записывают результат обследования на цифровой носитель (флеш-карту) в случае с цифровым рентгеном. В протоколе диагностики рентгенолог указывает уровень лучевой нагрузки, которой был подвергнут пациент.
Рентген или КТ: что безопаснее?
Рентген в отличие от КТ, безопаснее для здоровья, но ценность КТ как диагностического метода намного выше. КТ позволяет получить информацию о состоянии костей, мягких тканей и кровеносных сосудов в трехмерной проекции. Компьютерная томография – это метод неинвазивного исследования внутренних органов человека, при котором используется рентгеновское излучение. Однако, в отличие от рентгена, дозы облучения при проведении КТ намного выше из-за многократного сканирования.
КТ позволяет добиться объемного изображения благодаря устройству аппарата: источником лучей служит контур в виде буквы С, внутри которого расположена кушетка для пациента. Это позволяет выполнить серию снимков органов с разных ракурсов, которые обрабатываются компьютером и составляют трехмерное изображение. Кроме того, врач имеет возможность посмотреть поперечный «срез» органа, который, в зависимости от настроек аппарата, может достигать толщины всего в 1 мм. На рентгене такую информацию получить не удастся.
Подсчитано, что примерно 0,4 процента случаев рака вызваны КТ, а не рентгеном. Некоторые ученые ожидают, что этот уровень будет расти параллельно с более широким использованием КТ в медицинских процедурах. Специалисты оценивают риск развития рака от прохождения одной процедуры КТ как 1:2000.
Чем отличается рентген от флюорографии?
Флюорография и рентген основываются на действии ионизирующего излучения, однако последний позволяет получить более четкий снимок при гораздо меньшей лучевой нагрузке. Флюорография – это скорее профилактическое исследование, так как из-за невысокого качества изображения и маленького размера снимка (11 на 11 см) рассмотреть небольшие патологии на нем трудно. Для уточнения заболевания потом в большинстве случаев все равно назначают рентген.
Во время проведения флюорографии на пленочном оборудовании пациент стоит не перед кассетой с пленкой, как на рентгене, а перед флуоресцирующим экраном. Изображение грудной клетки, появившееся на нем, фотографируется на специальную плёнку. По сути флюорограмма – это аналоговая фотография с экрана. Этот метод диагностики ограничен исследованием органов грудной клетки, в то время как рентген может проводиться для любой части тела.
Появление в современных флюроографах цифрового детектора ионизирующего излучения дало возможность выводить изображение сразу на экран без потери качества. Вместе с этим снизилась и доза облучения, получаемая пациентом при исследовании. Теперь цифровая флюорография – это упрощенный аналог рентгеновского аппарата, предназначенный для диагностики органов грудной клетки. Эффективность цифровой флюорографии на 15% выше по сравнению с пленочной за счет более четкого изображения, но из-за высокой стоимости оборудования эта процедура не так распространена.
Рентгенография назначается только при наличии показаний или для контроля процесса лечения и позволяет получить снимок в натуральную величину. Он может быть обзорным, то есть выполняться в двух проекциях, или прицельным, когда исследуется только определенный участок тела. Следовательно, рентген предпочтительнее флюорографии из-за более высокой точности изображения и сравнительно низкой лучевой нагрузки.
Что показывает рентген легких?
Рентген легких позволяет выявить наличие и определить характер патологий легких, сердца, позвоночника и лимфатических узлов. Исследование назначается для общей оценки состояния здоровья дыхательной системы или уточнения диагноза при заболеваниях:
- пневмония;
- эмфизема;
- саркоидоз;
- туберкулез;
- плеврит;
- злокачественные новообразования;
- бронхит.
Процедура позволяет обнаружить опасные патологии на ранней стадии, определить их локализацию и область распространения. Обычно они проявляются на снимке в виде светлых пятен, которые называют затемнениями. Их классифицируют по плотности, размерам и форме. Новообразования или абсцесс в легких дают тень, а уплотнение ткани указывает на развитие воспалительного процесса. Затемнения вне легких могут быть признаком аневризмы аорты, опухолей пищевода или позвоночника.
Врач может направлять пациента на рентген легких несколько раз для оценки динамики лечения или при ее отсутствии. Такой подход оправдан тем, что вред от невылеченной болезни намного больше, чем от полученного облучения.
Показатель радиации при рентгене легких колеблется в пределах 0,03-0,3 мЗв за одну процедуру, поэтому даже при выполнении снимков в нескольких проекциях его суммарная доза не нанесет вреда здоровью. Примерно такое же количество облучения человек получает за две недели в обычной жизни.
Можно ли делать рентген беременным?
Рентген беременным делать можно, но только по назначению врача, который оценит срок беременности, органы, которые нужно исследовать, и учтет все возможные риски.
Вероятность того, что рентгенография, сделанная во время беременности, нанесет вред ребенку, минимальна. Диагностическое исследование назначается только по показаниям, когда другие методы неинформативны и не дают возможности поставить точный диагноз и начать лечение. Поэтому преимуществ у рентгена больше, чем потенциальный риск для ребенка.Однако большое количество исследований органов брюшной полости, проведенных незадолго до беременности, могут негативно повлиять на развитие плода.
При рентгене головы, конечностей или зубов репродуктивные органы не подвергаются облучению. Использование защитного свинцового фартука и воротника во время процедуры надежно блокирует рассеянное излучение. Исключением является рентген брюшной полости, при котором живот и ребенок подвергаются воздействию прямых рентгеновских лучей.
Риск причинения вреда плоду зависит от его возраста и интенсивности облучения. Воздействие высокой дозы радиации между второй и восьмой неделями беременности повышает риск нарушения развития или врожденных дефектов, в то время как облучение после восьмой недели повышает риск того, что у ребенка будут проблемы с обучаемостью и интеллектуальным развитием.
Однако доза облучения, получаемая во время рентгеновского исследования, намного ниже той, которая может вызвать эти осложнения. Прежде чем делать рентген, необходимо сообщить врачу о беременности. В зависимости от обстоятельств, он может отложить исследование или изменить его, чтобы уменьшить количество радиации.
С какого возраста делают рентген детям?
Рентген назначают детям любого возраста, но только при наличии показаний и тогда, когда другие методы исследований не дадут нужной диагностической информации. Преимущество этой процедуры – возможность постановки точного диагноза оправдывает риск, связанный с облучением. При проведении рентгенографии детям необходимо минимизировать воздействие ионизирующего излучения, потому что:
- дети более чувствительны к воздействию рентгеновских лучей, чем взрослые, то есть риск вероятности рака на единицу дозы ионизирующего излучения выше;
- использование оборудования и настроек облучения, предназначенных для взрослых, может привести к чрезмерному облучению детей;
- продолжительность жизни детей ожидаемо выше, поэтому риск развития рака в результате воздействия радиации потенциально выше, чем у взрослых.
С целью минимизации возможного вреда для здоровья, рентген детям проводится с применением самой низкой дозы облучения, которая дает качество изображения, пригодное для диагностики. Рентгенологическое исследование в профилактических целях делают детям с 14 лет.
Как делают рентген маленьким детям?
Рентген детям делают в присутствии родителей или опекунов. Их помощь может понадобиться, чтобы успокоить малыша или помочь ему удерживать нужное положение тела во время исследования. Процедура безопасна как для ребенка, так и для сопровождающих его лиц, так как доза облучения снижена. Для защиты частей тела, не участвующих в исследовании, ребенку надевают защитный фартук. Специальной подготовки перед диагностикой обычно не требуется. Исключение составляет лишь рентгеноконтрастное исследование, которое проводится натощак. Об особенностях проведения процедуры и необходимости подготовки родителям подробно расскажет врач, выдавший направление.
Рентген — вред или польза?
Польза рентгена выше вреда, причиненного здоровью из-за не выявленной вовремя болезни, поэтому этот метод диагностики широко применяется. Рентген способен вызвать повреждения и мутации ДНК человека, что может стать причиной развития онкологических болезней в зрелом возрасте. Поэтому Всемирная организация здравоохранения признала рентгеновские лучи канцерогенными. Величина потенциального риска зависит от того, какая часть тела подвергается облучению. Однако это касается случаев превышения предельно допустимой дозы радиации в год. Излучение, которое человек получает во время рентгена, несущественно, и не может причинить вреда здоровью. В организме есть эффективный механизм восстановления повреждений, вызванных влиянием низких доз радиации, поэтому риск мутаций и прочих негативных последствий для здоровья минимален. Только при превышении допустимого порога облучения организму человека может быть нанесен вред. Тем не менее, преимущества этого метода диагностики перевешивают возможные риски. Рентген позволяет:
- диагностировать патологии внутренних органов и костей неинвазивно, то есть без нарушения целостности кожи и тканей;
- обнаружить скрытую патологию, например, инфекционное поражение кости, скопление газов или жидкостей в тканях, опухоли;
- контролировать проведение хирургических операций.
Важно отметить, что эти преимущества касаются только взрослых. КТ у детей может утроить риск рака мозга и лейкемии, особенно при исследовании органов брюшной полости и грудной клетки. Их использование допустимо, но они должны быть выполнены только после обсуждения рисков и пользы с родителями ребенка.
В целом, рентген скорее полезен, чем вреден, так как он дает возможность поставить правильный диагноз и назначить необходимый курс лечения. Его риск практически всегда гораздо ниже возможного риска болезни, по поводу которой проводится обследование.
Источник
Рентгенография: виды, особенности проведения и показания к исследованию
Изобретенный более ста лет назад уникальный метод неинвазивного исследования внутренних органов – рентгенография – в настоящее время применяется для диагностики различных патологий в таких областях медицины, как остеология, неврология, пульмонология, оториноларингология, кардиология, гастроэнтерология, урология, гинекология, стоматология.
Хотя бы раз в жизни рентгеновский снимок приходится сделать каждому человеку. Что же при этом происходит и почему этот диагностический метод так популярен?
Что такое рентгенография?
Рентгенография – это исследование внутренней структуры тела путем просвечивания его рентгеновскими лучами и фиксирование результатов на специальную пленку. История рентгенологии началась в 1895 году. Именно тогда Вильгельмом Конрадом Рентгеном впервые было зарегистрировано затемнение фотопластинки под воздействием рентгеновского излучения. Он же установил, что рентгеновские лучи при прохождении различных тканей ослабляются по-разному, и за счет этого на фотопластинке можно получить различные изображения – например, костного скелета. Рентгенография стала первым в мире неинвазивным методом исследования внутренних органов и тканей.
Вплоть до настоящего времени рентгенография является основным методом диагностики при патологиях костно-суставной системы. Также важную роль этот метод играет при обследовании легких. Для оценки состояния внутреннего рельефа полых органов делается контрастная рентгенография. Принцип рентгенографии лег в основу более сложных современных исследований – например, компьютерной томографии.
Хотя рентгеновское излучение является ионизирующим и может оказать негативное влияние на организм, единственным серьезным противопоказанием для рентгенографии является беременность, и то – в качестве перестраховки. В случае контрастных исследований важно удостовериться, что у пациента нет индивидуальной непереносимости контрастирующих веществ. Современные диагностические аппараты продуцируют настолько незначительные разовые дозы рентгеновских лучей, что такое облучение укладывается в рамки естественного радиационного фона.
Достоинства и недостатки метода
Как и любой другой метод исследования, рентгенография имеет свои плюсы и минусы. Высокая разрешающая способность рентгеновских пленок позволяет получать снимки с достаточной степенью детализации, по которым может быть определена степень активности патологического процесса и реакция окружающих тканей. Рентгенограмма является диагностическим документом и, сравнивая ее с последующими снимками, можно судить о динамике патологического процесса. Недостаток классического метода – невозможность оценить состояние органов, находящихся в движении, и большие временные затраты на обработку пленки.
Виды исследования
Рентгенография легких представляет собой снимок грудной клетки в прямой и/или боковых проекциях, позволяющий оценить наличие и степень патологических изменений в легочной ткани.
Рентгенография сердца . Выполняется в трех проекциях: прямой, боковой и косой, часто с контрастированием пищевода. Помогает в диагностике патологий сердечно-сосудистой системы, пороков сердца, нарушений в работе малого круга кровообращения.
Рентгенография позвоночника . Необходима для диагностики переломов, деформаций и искривлений позвоночника. Позволяет косвенно судить об остеохондрозе позвоночника.
Рентгенография желудка и двенадцатиперстной кишки . Выполняется с контрастированием и без, позволяет выявить наличие перфорации, гнойников, инородных тел. Также можно определить, на каком уровне находится эвакуаторная функция и перистальтика.
Рентгенография желчного пузыря . Проводится с контрастированием, позволяет оценить состояние желчных протоков. Снимки делаются через 20, 30-40 и 45-60 минут после внутривенного введения препарата.
Рентгенография толстой кишки . Позволяет выявлять наличие полипов, опухолей, инородных тел, воспалений кишечника. Выполняется с контрастом.
Рентгенография брюшной полости . Обзорное исследование, которое проводится с контрастированием или без и позволяет уточнить диагноз при наличии жалоб пациента на сильные боли в животе.
Рентгенография костей и суставов . Позволяет диагностировать открытые и закрытые переломы, подвывихи и вывихи, травмы связок, хронические и острые заболевания суставов и костей, вторичные костно-суставные нарушения. Проводится в разных проекциях в зависимости от жалоб пациента и участка тела.
Рентгенография зубов . Проводится в ходе лечения зубов и перед установкой зубных имплантатов. Позволяет определить размер и расположение зубов, наличие непрорезавшихся зубов, абсцессы, переломы костей челюсти, неправильный прикус.
Метросальпингография . Контрастное рентгенологическое исследование полости матки и проходимости фаллопиевых труб. Выявляет наличие спаечных процессов и анатомических изменений.
Маммография . Рентгенографическое исследование молочных желез с целью выявления опухолевых заболеваний. Проводится на 6-10 день менструального цикла.
Подготовка к процедуре
Если пациенту назначена рентгенография пояснично-крестцового отдела позвоночника или органов брюшной полости, рекомендуется за два дня до исследования придерживаться бесшлаковой диеты, а накануне провести очистительную клизму или принять препарат «Фортранс». Остальные виды рентгенографии не требуют специальной подготовки пациента.
Особенности проведения рентгенографии
Рентгенографию проводят с помощью различных рентгеновских приборов, которые могут быть как крупногабаритными, так и небольшими. Как правило, при проведении исследования пациент находится в одной комнате, а врач-рентгенолог в смежной смотровой, откуда подает команды – например, задержать дыхание.
Контрастную рентгенографию обычно проводят утром, натощак или после легкого завтрака. Бесконтрастное исследование может быть назначено на любое время. Продолжительность процедуры составляет несколько минут, кроме случаев, когда требуется сделать серию снимков с заданной периодичностью. Отдельно требуется время на проявку, сушку и описание снимков.
Рентгенография может проводиться в положении пациента стоя, сидя или лежа, в зависимости от назначенного исследования. В область облучения не должны попасть металлические украшения или застежки, которые будут видны на рентгеновском снимке и исказят результаты.
Анализ результатов
Четкость и точность полученного рентгеновского снимка зависят от напряжения и силы тока в рентгеновской трубке и времени ее работы. Эти параметры должны выставляться индивидуально в зависимости от исследования и массогабаритных характеристик пациента. К каждому рентгеновскому аппарату прилагается таблица средних значений для различных органов и тканей, однако врачу-рентгенологу приходится их корректировать для каждого конкретного случая. От того, насколько правильно он это сделает, будет зависеть качество исследования. Также очень важна неподвижность пациента во время процедуры.
Запись изображения проводится на рентгеночувствительную пленку либо на цифровой носитель с помощью компьютера. Регистрация рентгеновских данных в цифровом виде пока еще стоит дорого, поэтому традиционные рентгеновские пленки не теряют своей актуальности и применяются повсеместно.
При описании рентгеновского снимка следует учитывать, что изображение формируется расходящимися пучками лучей, поэтому кроме полученных размеров исследуемых объектов анализу подлежат затемнения и просветления.
Где сделать рентген в Махачкале?
В нашем центре имеется современный аппарат, пройти рентгенографию в нашем центре – легко! Звоните и записывайтесь!
Источник